
CPTG121 Introduction to Computer Science I La Sierra University

Page 1 of 5 Copyright Enoch Hwang 2009

Arrays

1. Arrays

The array is another data type for storing values. Unlike a regular single variable where it can
store only one value at a time, an array can store many values in different locations using the
same name. An index is used to access the different locations in an array. An array of size 10 has
index locations from 0 to 9.

To declare an integer array called n having 10 locations:

int n[10];

Declaring a string array called day and initializing it with the seven names:

string day[7] = {“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,
“Saturday”};

To assign the number 13 into location 2 of the array:

n[2] = 13;

int main () {

 int n[10]; // declare an array called n of size 10
 int m[5] = {8, 5, 4, 3, 9}; // initialize array m with five numbers
 int i;

 n[0] = m[1] + 2; // accessing values in the array
 cout << n[0]; // the number 7 will be printed out

//input 10 values into the 10 locations of the array n
 for(i=0; i<10; i=i+1){
 cin >> n[i];
 }

//print the 10 values from the 10 locations of the array
 for(i=0; i<10; i=i+1){
 cout << n[i];
 }

 return 0;
}

http://www.cplusplus.com/doc/tutorial/arrays/

CPTG121 Introduction to Computer Science I La Sierra University

Page 2 of 5 Copyright Enoch Hwang 2009

2. 2-dimensional Arrays

To declare a two-dimension array of floating point numbers called table having 3 rows and 2
columns:

float table[3][2];

To assign the number 3.1415 into row 2, column 0 of the array:

 table [2][0] = 3.1415;

 Column 0 Column 1
Row 0
Row 1
Row 2 3.1415

To declare and initialize a 2-dimensional array having 2 rows and 5 columns:

int n[2][5] = {{2,4,6,8,10},{1,3,5,7,9}};

To access row 1 column 3 of the array:

cout << n[1][3]; // what will be printed out?

or

if (n[1][3] > 5) …

CPTG121 Introduction to Computer Science I La Sierra University

Page 3 of 5 Copyright Enoch Hwang 2009

3. Parallel Arrays

By using the same subscript for two or more arrays, you can build relationships between data
stored in these arrays. This is especially useful when the related data is of unlike types. For
example, in a payroll system where you want to store the names of employees and the hours
worked by each employee, you will use one array of type string to store the names and a second
array of type int to store the hours worked. Using the same index for both arrays will allow you
to access the name and hours worked for that one employee. Notice that this is similar to a 2-
dimensional array in the sense that the two separate arrays are like two columns in a 2-
dimensional array. The difference, however, is that the two parallel arrays can be of different
data types, whereas for a 2-dimensional array, all columns have the same type.

#include <iostream>

#include <iomanip> // needed for setw

using namespace std;

int main() {

 const int SIZE = 5;

 string names[SIZE];

 unsigned int hours[SIZE];

 for (int i=0; i<SIZE; i++) {

 cout << "Enter the name and hours worked for employee " << i+1 << "? ";

 cin >> names[i] >> hours[i];

 }

 cout << left << setw(10) << "Name" << right << setw(10) << "Hour" << endl;

 for (int i=0; i<SIZE; i++) {

 cout << left << setw(10) << names[i] << right << setw(10) << hours[i] <<

endl;

 }

}

Subscript/Row names hours

0 John 3
1 Jane 7
2
3
4

CPTG121 Introduction to Computer Science I La Sierra University

Page 4 of 5 Copyright Enoch Hwang 2009

4. Exercises (Problems with an asterisk are more difficult)

1. Write a program using a loop to input 10 numbers. After you have entered these 10
numbers, then the program will print out these 10 numbers.

2. Write a program with an array of size 10. Initialize the array with numbers from 1 to 50
of your choice. Now calculate and print out the sum of these numbers.

3. Write a program with an array of size 10. Initialize the array with numbers from 1 to 50
of your choice. Now calculate and print out the average of these numbers.

4. Write a program to generate 10 random numbers from 1 to 50. Store these 10 numbers in
an array. Now find and print out the largest of these numbers.

5. Write a program to generate 10 random numbers from 1 to 50. Store these 10 numbers in
an array. Now find and print out the largest and second largest of these numbers.

6. Write a program to enter an integer number and then generate the multiplication table
from 1 to 10 for that one number. Put these numbers into an array of size 10. After that,
print out the table from the array.

7. Write a program with an array of size 10. Initialize the array with numbers of your
choice. Have the user enter a number, and then search for this number in the array. Print
out the message “number found” if the number entered is found in the array.

8. * Repeat question 7 but also print out the message “number NOT found” if the number is
not found in the array.

9. Write a program to print out a message depending on an input number. If the input
number is 1 then print out the message “Good morning”, if the number is 2 then print out
the message “Good afternoon”, if the number is 3 then print out the message “Good
evening”, if the number is 4 then print out the message “Good night” and if the number is
anything else then print out the message “Invalid input.” The program repeats if the input
number is invalid.

a) Use nested if statements to do this.

b) Use a switch statement to do this.

c) Use parallel arrays to do this.

10. * Create a two-dimensional 10×10 array and have the program automatically fill it with
the numbers for the 10×10 multiplication table. You need to use two for loops for this. To
check that the program is correct you will need to print out this two-dimensional array.

11. ** Sorting. Write a program with an array of size 10. Initialize the array with numbers of
your choice but not in any order. Now print these numbers in ascending order.

CPTG121 Introduction to Computer Science I La Sierra University

Page 5 of 5 Copyright Enoch Hwang 2009

12. ** Write a program to generate 11 random numbers from 1 to 50. Store these 11 numbers
in an array. Now calculate and print out the median of these numbers.

Reference: https://en.wikipedia.org/wiki/Median

13. Write a program to input an integer. Print out whether the number entered is a prime
number or not.

14. *** Use the Sieve of Eratosthenes algorithm for finding all the prime numbers from 2 to
500. The algorithm:

1. Create a list of consecutive integers from two to n: (2, 3, 4, ..., n).
2. Initially, let p equal 2, the first prime number.
3. Cross out from the list all multiples of p greater than p.
4. Find the first number remaining in the list greater than p (this number is the next

prime); let p equal this number.
5. Repeat steps 3 and 4 until p2 is greater than n.
6. All of the remaining numbers in the list are prime.

Hint: For step 1, you will need to use an array to keep track of whether a number has
been crossed out or not. The indexes for the array are the integers. Initialize the array
with 0’s. A 0 in a location means that that number is not crossed out, and a 1 in that
location means that that number has been crossed out. For step 3, you can cross out a
number simply by changing the content of that number index location to a 1.

Reference: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

https://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

